NEWTON's LAWS of MOTION

Newton's $1^{\text {st }}$ law sometimes called

 "Law of Inertia"
Inertia: the tendency of all objects to resist any change in motion

$1^{\text {st }}$ Law

- Once airborne, unless acted on by an unbalanced force (gravity and air - fluid friction), it
 would never stop!

$1^{\text {st }}$ Law

- Unless acted upon by an unbalanced force, this golf ball would sit on the tee forever.

Why then, do we observe every day objects in motion slowing down and becoming motionless seemingly without an outside force?

It's a force we sometimes cannot see friction.

Objects on earth, unlike the

 frictionless space the moon travels through, are under the influence of friction.
Newtons's $1^{\text {st }}$ Law and You

Don't let this be you. Wear seat belts.
Because of inertia, objects (including you) resist changes in their motion. When the car going $80 \mathrm{~km} /$ hour is stopped by the brick wall, your body keeps moving at $80 \mathrm{~m} / \mathrm{hour}$.

Newton's $2^{\text {nd }}$ Law:

The acceleration of an object depends on the mass and the amount of force

Force = mass x acceleration

$2^{\text {nd }}$ Law

- When mass is in kilograms and acceleration is in $\mathrm{m} / \mathrm{s} / \mathrm{s}$, the unit of force is in newtons (N).
- One newton is equal to the force required to accelerate one kilogram of mass at one meter/second/second.

$2^{\text {nd }} \operatorname{Law}(F=m \times a)$

- How muc orce is needed to acc erate a

1400 kil ram car 2 meters per sen ad/per
Write the formula

- $F=m$
- Fill in given numbers and units
- $F=1400 \quad 2$ meters per secon econd
- Solve for the unknown
- 2800 kg -meters/secona/second or 2800 N
different forces We know that objects with different masses accelerate to the ground at the same rate.
- However, because of the $2^{\text {nd }}$ Law we know that they don't hit the ground with the same force.

$$
5 \Rightarrow \iint J!
$$

Newton's 3 ${ }^{\text {rd }}$ Law:

When one object exerts a force on a

 second object, the second object exerts an equal and opposite force on the first.
$3^{\text {rd }}$ Law

According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body.

$3^{\text {rd }}$ Law

There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces.

Newton's 3rd Law in Nature

- Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards. In turn, the water reacts by pushing the fish forwards, propelling the fish through the water.
- The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of
 the force on the fish (forwards).

$3^{\text {rd }}$ Law

Flying gracefully through the air, birds depend on Newton's third law of motion. As the birds push down on the air with their wings, the air pushes their wings up and gives them lift.

- Consider the flying motion of birds. A bird flies by use of its wings. The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards.
- The size of the force on the air equals the size of the force on the bird; the direction of the force on the air (downwards) is opposite the direction of the force on the bird (upwards).
- Action-reaction force pairs make it possible for birds to fly.

Other examples of Newton's Third Law

- The baseball forces the bat to the left (an action); the bat forces the ball to the right (the reaction).

3rd Law

- Consider the motion of a car on the way to school. A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards.

3rd Law

> The reaction of a rocket is an application of the third law of motion. Various fuels are burned in the engine, producing hot gases.

The hot gases push against the inside tube of the rocket and escape out the bottom of the tube. As the gases move downward, the rocket moves in the opposite direction.

Momentum

- An object's momentum is directly related to both its mass and velocity.
- Momentum = mass x velocity
- momentum is designated as " p ".
- Therefore:

$$
p=m v
$$

- The unit for mass is kg , the unit for velocity is meter/second, therefore the unit for
$\mathrm{m} / \mathrm{sec}$
- Conservation of Momentum:
- When two or more objects interact (collide) the total momentum before the collision is equal to the total momentum after the collision

Momentum - 2 moving objects

- During this collision the speed of both box cars changes. The total momentum remains constant before \& after the collision. The masses of both cars is the same so the velocity of the red car is transferred to the blue car.

Momentum - 1 moving object

- During this collision the speed red car is transferred to the blue car. The total momentum remains constant before \& after the collision. The masses of both cars is the same so the velocity of the red car is transferred tot the hlen mar

Momentum - 2 connected objects

- After this collision, the coupled cars make one object $\mathrm{w} /$ a total mass of $60,000 \mathrm{~kg}$. Since the momentum after the collision must equal the momentum before, the velocity must change. In this case the velocity is reduced from $10 \mathrm{~m} / \mathrm{sec}$. to $5 \mathrm{~m} / \mathrm{sec}$.

