Force and Motion

Force -

- a push or pull

- The
combination of
all forces acting
on an object is
the net force.

Balanced Force

- Two or more forces exerted on an object are balanced if their effects cancel each other and do not cause a change in the object's motion.
- The net force is zero.

Balanced forces $=$ no acceleration

Unbalanced Force

- Occurs when the forces acting on the object changes the object's motion.
- The net force is NOT zero.

Balanced Force

Unbalanced Forces

Unequal opposing forces
 produce an unbalanced force
 causing motion

Friction -

- is a force that resists the sliding between two touching surfaces.
- Friction is an opposing force
- Friction will always slow a moving
object.

Types of Friction

Plofil

- Static friction causes surfaces to stick together. It keeps an object at rest.
- Sliding friction slows down an object that slides.
- Rolling friction is needed to make a wheel turn.
- Fluid friction is air and/or water resistance.

INERTIA

- The tendency of an object to remain at a constant speed unless another force acts upon it.
- If it is moving at a certain speed it will stay at that speed unless a force acts on it.
- If it is still, then it will stay still unless a force acts on it

avity: a force of attraction betwe

 objects that is due to their mass

-All matter has mass

 -All matter experiences gravity
e earth's mass is large, therefore

gravitational pull is large

British scientist Sir Isaac Newton developed the "Law of Universal

Gravitation"

What is Gravity?

- Gravity=FORCE!
- Gravity is a force of attraction.
- Gravity PULLS.

Matter \& Gravity Facts

- All matter has mass.
- All matter experiences gravity.

All objects experience a gravitational attraction toward each other.

Law of universal gravitation

- All objects in the universe attract each other through gravitational force.
- The size of the force depends on mass and distance.

Poor Mr Newton, we fell right onto his head...
Hope he'll be OK...

Law of Universal Gravitation Part 1:

Gravitational force increases as mass

increases

Gravity and Mass

Greater mass=greater gravitational pull.

Earth's gravitational force is due to it's enormous mass.

Law of Universal Gravitation Part 2:

Gravitational force decreases as distance

increases

a Gravitational force is small between objects with small masses.

Figure 20 The arrows indicate the gravitational force between the objects. The width of the arrows indicates the strength of the force.
b Gravitational force is larger
between objects with larger masses.

If the distance between two objects is increased, the gravitational force pulling them together is reduced.

Gravity and Distance

Closer together=greater gravitational pull.

Which ones have more gravitational pull?

Vs.

Which ones have more gravitational pull?

Vs.

Now which ones?

\bigcirc vs. \bigcirc

Mass

Weight

- Measure of the gravitational force exerted on an object.
- Changes with location.
- Unit=Newtons
- A newton is the amount of force it takes to accelerate 1 km of mass $1 \mathrm{~m} / \mathrm{s}$

Acceleration due to gravity

- Rate at which velocity changes because of the pull of gravity.
- Earth=
$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$30 \mathrm{~m} / \mathrm{s} \rightarrow 3 \mathrm{~s}$
$40 \mathrm{~m} / \mathrm{s} \longrightarrow 4 \mathrm{~s}$
$50 \mathrm{~m} / \mathrm{s} \longrightarrow 5 \mathrm{~s}$

Acceleration due to gravity

 (g)

Gravity \& Acceleration due to

gravity

All objects fall at the same rate because the acceleration due to gravity is the same for all objects.

- All objects accelerate toward Earth at 9.8 $\mathrm{m} / \mathrm{s} / \mathrm{s}$

Air resistance,
a type of friction slows down acceleration.

Air resistance is the force of friction

 and the opposing force created by going through the air.

Terminal velocity

- When an object falls at a constant velocity because the air resistance force matches the force of gravity.
- Net force=0

