

Click to add subtitle

Binary Ionic Compounds

- When making a binary compound the metal is listed first and the nonmetal is listed second
 - NaCI Sodium is the positive ion and Chlorine is the negative ion
 - CaF Calcium is the positive ion and Flourine is the negative
 - BaBr Barium is the positive ion and Bromine is the negative one

Ty These

- Write the correct chemical formula for the ionic compounds containing the following elements
 - Fluorine and Lithium
 - Strontium and Sulfur
 - Aluminum and Nitrogen
 - Phosphorus and Boron
 - Tellurium and Radium

Naming Binary Ionic Compounds

- When naming these compounds, the name of the positive ion stays the same while the negative ion changes from –ium so to –ide
 - MgN Magnesium Nitride
 - NaCI Sodium Chloride
 - BaBr Barium Bromide
 - LiF Lithium Fluoride

ry hese on your Own

- SnS
- BeO
- RbI (that is a capital I on the end there)
- BaTe

To Determine the formula for lonic Compounds

- The charge on the final molecule should be neutral.
- If you combine an element that will lose 2 electrons with one that will gain only 1 electron, there will have to be two of the element that only gains 1 electron so that the charge will be neutral
- Magnesium and Bromine
 - Magnesium has two valence electrons that it will lose.
 Bromine has 7 valence electron so it can only gain 1.
 Mg will be a ²⁺ Ion and Bromine will be a ⁻ ion.

Cherefore...

- The formula must reflect enough of each ion to equate a neutral charge
- Mg²⁺ and B⁻
- There needs to be 2 total Bromine ions in order to satisfy the need for a total of 2 negative charges.
- The formula is MgB₂
- What is the formula for a compound with
 - Lithium and Oxygen
 - Calcium and Phosphorus

CrissCross Method

 After you determine the charges of the ions, you can simply crisscross them to determine the formula

CrissCross

 We can do the same thing for Aluminum and Oxygen

Covalent Compounds

Number of Atoms	Prefix
2	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

When naming covalent compounds you need to include a prefix to tell how many of each are in the compound

-mono is rarely used. It is in some cases, though such as carbon monoxide – CO

Note that chemists try to <u>avoid</u> <u>putting an *a* and an *o* together with the oxide name, as in dec**ao**xide, so they normally drop the *a*off the prefix.</u>

Try Naming These on your own

- P_2O_5
- N₂O
- SiO₂
- CBr₄
- **ICI**₃
- N_2O_3

A Few Examples

- Co₂ Carbon *Di*oxide
- P₄O₁₀ *Tetra*phosphorus *Dec*oxide
- SO₃ Sulfer *Tri*oxide
- N₂O₄ *Di*nitrogen *Tetr*oxide

Common Compounds you should know

- Write these formulas and their names
 - H_2O NaCI H_2SO_4 CO_2 CO- HCI